Come rimanere aggiornati sui propri temi di ricerca

Uno strumento per rimanere aggiornati sui propri temi di ricerca

Come forse saprete l’agenzia nazionale per la valutazione ha di recente pubblicato una lista delle principali riviste scientifiche divise per disciplina. Questa lista mi ha fatto venire in mente la possibilità di creare uno strumento che consenta al ricercatore di sociologia (ma l’idea può facilmente essere adattata ad altre discipline) di rimanere sempre aggiornato sui propri temi di ricerca. Al momento questa lista comprendere per la sociologia (settori 14/C1-C2-D1) 155 riviste. Di queste 117 hanno un servizio di alert basato su RSS. Mancano purtroppo all’appello molte delle riviste italiane perché la maggior parte delle case editrici (ad esempio Il Mulino) non offre questo utile servizio. Potete dare un’occhiata all’elenco delle riviste incluse ed escluse a https://docs.google.com/spreadsheet/pub?key=0AlvOxUU1s8RVdGhpYUFYcW00cjAtTVlIZVYyNExHcWc&output=html. Lo strumento che ho creato consente di utilizzare fino a tre parole chiave per filtrare il flusso complessivo di tutti gli articoli pubblicati di recente. Per ciascuna parola chiave viene cercata una corrispondenza nel titolo o nell’abstract dell’articolo. Passano il filtro gli articoli che contengono almeno una parola chiave. Ora la cosa interessante è che Yahoo!Pipes offre il suo output in formato RSS. Il che significa che un ricercatore può abbonarsi ad un flusso filtrato di articoli che sarà aggiornato non appena un nuovo articolo che corrisponde ai criteri di ricerca sarà pubblicato. Vi faccio alcune esempi:

  • immigration, migration, immigrants restituisce 165 articoli [RSS];
  • facebook, twitter, youtube restituisce 7 articoli [RSS];
  • poverty, povertà, welfare restituisce 104 articoli [RSS].

Potete impostare liberamente i vostri filtri a http://pipes.yahoo.com/fabiogiglietto/0c6fa156dd5354990f466d1da48c0a47. Per chi non usa un lettore di feed RSS, alla voce more options, c’è anche la possibilità di ricevere i nuovi articoli via posta elettronica. Fatemi sapere cose ne pensate e se vi vengono in mente idee per migliorare lo strumento.

Popolarità su Facebook e successo elettorale nelle amministrative 2012

Risultati e modelli di previsione elettorale con Facebook

Nel post precedente ho messo alla prova il modello sviluppato per le amministrative 2011 sui dati rilevati in questa tornata elettorale.
Vediamo come è andata.
Il modello ha funzionato nel 66,6% dei casi. Nello specifico il candidato con più Facebook Likes è risultato il più votato nel 41,6% dei casi (Catanzaro, Como, Genova, Lecce, Lucca, Monza, Palermo, Rieti, Taranto e Trani) ed è arrivato invece secondo nel 25% dei casi (Agrigento, Belluno, Brindisi, Cuneo, Gorizia e Pistoia).
Nel 2011 il modello aveva funzionato nell’82,1% dei casi (39,2%  primo e 42,86% secondo).
Nel 20,8% dei casi il modello ha previsto correttamente sia il candidato più votato che quello secondo classificato, ma in altrettanti casi il modello ha fallito completamente (in alcuni di questi casi non aveva alcuna chance visto che i candidati che hanno vinto non avevano una pagina Facebook).
L’indice di accuratezza della previsione è stato di 4,875 su 10. Nel 2011 questo indice ha fatto registrare performance simili (4,71).
Vediamo invece come è andata per quanto invece riguarda il secondo modello, il cui scopo è prevedere la percentuale di voti riportati da ciascun candidato.
Il margine di errore rilevato (candidate prediction gap) varia da un minimo di 0,07% ad un massimo di 70,54% (2011 CPG MIN: 0, MAX: 84,18).
Lo scarto medio fra le percentuali di voto e quelle di Likes è stato del -7,04% ovvero del 12,76% facendo la media dei valori assoluti degli scarti. Il primo valore è un indicatore di quanto la previsione sia sbilanciata in un senso o nell’altro (+ voti che like o + likes che voti), il secondo valore indica il margine di errore effettivo. Nel 2011 il CPG medio dei valori assoluti era 15,77% e l’ABS[CPG] -6,21%. Si tratta di margini di errori molto alti che rendono il modello così com’è poco utile dal punto di vista previsionale.
I 24 comuni capoluoghi con almeno due candidati con pagina Facebook avevano 5 e 16 candidati. Il 55,87% di questi candidati aveva una pagina Facebook che è stata monitorata nell’ambito di questo studio. Il margine medio di errore rilevato per comune ovvero ABS[Municipality Prediction Gap] è 15,24% con un massimo di scarto del 35,88% (Agrigento) ed un minimo del 4,70% (Genova). Nel 2011 l’ABS[MPG] rilevato fu 18,99% con un MIN di 5,09% ed un MAX di 51,99%.
Si conferma il rapporto fra ABS[MPG] e percentuale di candidati presenti con una pagina su Facebook rispetto al totale dei candidati. L’ABS[MPG] passa dal 24,78% dei comuni con meno del 33% di candidati su Facebook all’11,89% di quello dei comuni con oltre il 66% di candidati con pagina (nella categoria 34-66% l’ABS[MPG] è di 15,11%).
Confermato anche il rapporto fra dimensione della città (in termini di numero di elettori) e margine di errore. Nelle grandi città si ottengono previsioni più accurate che in quelle più piccole. Si passa infatti da un ABS[MPG] di 17,39% delle città con meno di 80000 elettori ad un ABS[MPG] intorno al 9% tanto per le città con un numero di elettori compreso fra 80000 e 200000 sia per quelle oltre i 200000.
Per quanto riguarda gli schieramenti si è proceduto a calcolare un Party Prediction Gap (PPG). Nel 2011 tutti gli schieramenti avevano ricevuto un maggiore consenso su Facebook, rispetto alle percentuali reali di voto, ma questa tendenza si faceva più evidente in rapporto ai partiti più estremi (sinistra PPG=-11,27% e destra PPG =-8,66%). Il partito invece meno sopravvalutato dal modello risultò il Centro Destra (PPG=-1,30%). Rispetto all’edizione 2011, sono stati aggiunti due nuovi schieramenti: Terzo Polo e Lega Nord. Il primo non esisteva nel 2011 ed il secondo era accorpato al risultato del Centro Destra. Proprio questi due nuovi schieramenti sono stati quelli più sottostimati dal modello Terzo Polo (PPG=4,58%) e Lega Nord (PPG=5,56%). La Destra è invece risultato lo schieramento più sopravvalutato nelle previsioni di Facebook (PPG=-18,71%).
Se dunque si conferma un maggiore attivismo online da parte dei supporter dei partiti più estremi, si evidenzia anche l’anomalia della Lega Nord. Accorpando infatti i dati della Lega Nord con quelli del Centro Destra, quest’ultimo torna ad essere fra gli schieramenti più sopravvalutati dal modello. Questi dati potrebbero far pensare ad un incidenza dei candidati (o meglio delle strategie e supporter) Lega Nord anche sul risultato del 2011. Quello che appare evidente è che le strategie di costruzione del consenso della Lega Nord (e forse la tipologia di elettori di questo partito) non sono passate, almeno in questa occasione, per Facebook.
Per il futuro intendo provare a perfezionare il modello basato sugli scarti prendendo in considerazione solo i voti ottenuti dai candidati effettivamente presenti con una pagina su Facebook e applicando dei correttivi basati sui risultati dei PPG dei diversi schieramenti. Inoltre vorrei capire quali variabili possono influenzare il margine di errore e l’indice di accuratezza in modo da costruire un indice di affidabilità delle previsione.
I dati sono disponibili in questo Google Spreadsheet.
Da oggi ho inoltre reso pubblicamente disponibile il working paper relativo allo studio del 2011: Giglietto, Fabio, If Likes Were Votes: An Empirical Study on the 2011 Italian Administrative Elections (January 16, 2012). Available at SSRN: http://ssrn.com/abstract=1982736. Una versione ridotta di questo articolo sarà pubblicata negli atti dell’ICWSM-12.

Previsioni Facebook sulle elezioni amministrative 2012

Secondo tentativo di previsione dei risultati elettorali con Facebook

Dopo la prima esperienza fatta con le elezioni amministrative 2011, ho deciso di raccogliere i dati delle amministrative 2012. Grazie alla indispensabile collaborazione di Agnese Vardanega e del suo team, sono riuscito a identificare e monitorare 116 pagine Facebook relative ai 229 candidati sindaco dei 26 comuni capoluogo che andranno al voto il 6 e 7 Maggio. Si tratta del 51,6% contro il 44,5% dell’edizione 2011 dell’indagine.  Come lo scorso hanno ho deciso di concentrarmi solo sull’utilizzo delle pagine e non su quello dei profili personali (per una panoramica complessiva sull’utilizzo del web da parte dei candidati 2012 si veda questo report). La raccolta dati è iniziata il 17 Aprile e si è conclusa con la rilevazioni di oggi 5 Maggio. Per ogni pagina individuata ho raccolta sia il numero di Likes che quello dei talking_about_count (una metrica di engagement della pagina che non esisteva nel 2011).
Nel complesso ho rilevato un totale di 80147 Likes (contro i 179003 del 2011). Nel 2011 i rinnovi delle amministrazioni dei 29 capoluoghi coinvolgevano un totale di 4724554 elettori. Il rapporto con i Likes era dunque del 3,78%. Al momento non ho il dato degli elettori totali per i capoluoghi 2012, ma una prima stima basata sul numero di abitanti dei comuni chiamati al voto farebbe pensare ad una flessione della partecipazione. Gli elettori chiamati al voto 2012 nei 26 comuni capoluoghi sono in totale 2846168. Il rapporto con i like è dunque sceso dal 3,78% al 2,81% (un calo del 25,6% rispetto all’anno precedente).
Seguendo quanto fatto lo scorso anno, per ogni candidato calcolerò un Candidate Prediction Gap (CPG) inteso come la differenza fra la percentuale di voti validi e la percentuale di Likes ricevuti sul totale di quelli ricevuti da tutti i candidati del comune presenti con una pagina su Facebook.
Lo scopo è quello di creare un semplicissimo modello previsionale che possa essere studiato e testato nel tempo con l’obiettivo di creare, eventualmente, un modello previsionale più articolato, basato su un numero maggiore di variabili ed auspicabilmente più preciso.
Per ogni comune provvederò poi a calcolare un Municipality Prediction Gap (ABS[MPG]) e per comprendere meglio gli effetti di alcune variabili saranno messi a confronto categorie di comuni omogenee per numero di abitanti e percentuale di candidati presenti con pagina su Facebook. Infine provvederò a classificare i candidati per area politica di appartenenza e calcolerò un Party Prediction Gap (PPG) e un ABS[PPG] . Lo scarto fra la previsione ed il risultato può essere negativo o positivo. Per questo motivo in alcuni casi ho calcolato la media dei valori assoluti degli scarti [ABS] per dare conto dell’effettiva distanza fra i valori e in altri casi, laddove era importante mettere in evidenza la direzionalità dello scarto la semplice media degli scarti.
Infine calcolerò un indice di accuratezza della previsione attribuendo ad ogni comune un punteggio in base alla seguente tabella:

Score
Most popular candidate on Facebook arrived second 3
Second most popular candidate on Facebook won 3
Second most popular candidate on Facebook arrived second 4
Most popular candidate on Facebook won 6

 
Lo studio sui dati del 2011 ha fatto registrare un CPG che variava fra 0 e 84,18% per una media degli scarti in valore assoluto di 15,77% e non in valore assoluto di -6,21% (il valore negativo indica che la percentuale di popolarità su Facebook era tendenzialmente superiore a quella effettivamente ottenuta dai candidati alle elezioni – anche per via del minore numero di candidati per città). Nel 2011, dopo aver escluso i tre comuni che presentavano meno di due candidati con pagina Facebook, il campione era rappresentato da 26 competizioni elettorali corrispondenti ad altrettanti comuni. Fra i candidati di questi comuni poco più della metà avevano una pagina Facebook (51,1%). Nel 2012 questa percentuale, relativa ai 24 comuni con più di un candidato presente con una sua pagina Facebook, è del 54,8%.
Fra le conclusioni dello scorso anno si notava che:

  • l’ABS[MPG] diminuiva al crescere della percentuale di candidati del comune presenti con una pagina su Facebook;
  • l’ABS[MPG] nelle grandi città era inferiore rispetto a quello delle città medie e piccole;
  • Lo schieramento di centro-destra era quello più sottostimato rispetto agli altri dalla previsione basata sull’analisi del consenso su Facebook. Quello meno sottostimato era invece lo schieramento di sinistra;
  • In base all’indice di accuratezza della previsione ho potuto osservare come il candidato che risultava primo nella competizione su Facebook, in oltre l’80% dei casi risultava vincitore o piazzato al secondo posto della competizione elettorale.

Sulla base di queste conclusioni vorrei provare a fare delle vere previsioni sui dati di quest’anno (con la premessa che si tratta di un gioco e che il minore interesse degli elettori rispetto al 2011 porterà con tutta probabilità a previsioni meno attendibili):
Hanno l’80% di vincere o arrivare secondi nelle rispettive competizioni elettorali:

  • Salvatore Pennica (Agrigento), scarsamente affidabile;
  • Corrado Parise (Alessandria), poco affidabile;
  • Mariangela Cotto (Asti), poco affidabile;
  • Jacopo Massaro (Belluno), scarsamente affidabile;
  • Mauro D’Attis (Brindisi), poco affidabile;
  • Salvatore Abrano (Catanzaro), poco affidabile;
  • Mario Lucini (Como), poco affidabile;
  • Gigi Garelli (Cuneo), poco affidabile;
  • Marco Doria (Genova), affidabile;
  • Giuseppe Cingolani (Gorizia), scarsamente affidabile;
  • Raffaele Mauro (Isernia), scarsamente affidabile;
  • Ettore Di Cesare (L’Aquila), scarsamente affidabile;
  • Massimiliano Mammì (La Spezia), scarsamente affidabile;
  • Paolo Perrone (Lecce), affidabile;
  • Alessandro Tambellini (Lucca), poco affidabile;
  • Roberto Scanagatti (Monza), poco affidabile;
  • Leoluca Orlando (Palermo), molto affidabile;
  • Roberto Ghiretti (Parma), poco affidabile;
  • Anna Maria Celesti (Pistoia), poco affidabile;
  • Simone Petriangeli (Rieti), scarsamente affidabile;
  • Ezio (Ippazio) Stefano (Taranto), poco affidabile;
  • Gigi Riserbato (Trani), scarsamente affidabile;
  • Sabrina Rocca (Trapani), poco affidabile;
  • Gianni Benciolini (Verona), molto affidabile.

Il calcolo dell’affidabilità tiene conto della dimensione del comune e della percentuale di candidati presenti con una loro pagina su Facebook.
Nei prossimi giorni tornerò sull’argomento per vedere come è andata e quali indicazioni si possono trarre in vista della costruzione di un modello più efficace (magari tenendo anche conto della metrica talking_about_this_count).
I dati che ho raccolto sono disponibili a https://docs.google.com/spreadsheet/pub?key=0AlvOxUU1s8RVdGlFUlYwUy1nWW5QYV9mNFFobng4eUE&output=html.
L’articolo relativo allo studio sui dati del 2011 è stato accettato per la pubblicazione negli atti e la presentazione nella sezione poster di ICWSM-12.Dopo la prima esperienza fatta con le elezioni amministrative 2011, ho deciso di raccogliere i dati delle amministrative 2012. Grazie alla indispensabile collaborazione di Agnese Vardanega e del suo team, sono riuscito a identificare e monitorare 116 pagine Facebook relative ai 229 candidati sindaco dei 26 comuni capoluogo che andranno al voto il 6 e 7 Maggio. Si tratta del 51,6% contro il 44,5% dell’edizione 2011 dell’indagine.  Come lo scorso hanno ho deciso di concentrarmi solo sull’utilizzo delle pagine e non su quello dei profili personali (per una panoramica complessiva sull’utilizzo del web da parte dei candidati 2012 si veda questo report). La raccolta dati è iniziata il 17 Aprile e si è conclusa con la rilevazioni di oggi 5 Maggio. Per ogni pagina individuata ho raccolta sia il numero di Likes che quello dei talking_about_count (una metrica di engagement della pagina che non esisteva nel 2011).
Nel complesso ho rilevato un totale di 80147 Likes (contro i 179003 del 2011). Nel 2011 i rinnovi delle amministrazioni dei 29 capoluoghi coinvolgevano un totale di 4724554 elettori. Il rapporto con i Likes era dunque del 3,78%. Al momento non ho il dato degli elettori totali per i capoluoghi 2012, ma una prima stima basata sul numero di abitanti dei comuni chiamati al voto farebbe pensare ad una flessione della partecipazione.
Seguendo quanto fatto lo scorso anno, per ogni candidato calcolerò un Candidate Prediction Gap (CPG) inteso come la differenza fra la percentuale di voti validi e la percentuale di Likes ricevuti sul totale di quelli ricevuti da tutti i candidati del comune presenti con una pagina su Facebook.
Lo scopo è quello di creare un semplicissimo modello previsionale che possa essere studiato e testato nel tempo con l’obiettivo di creare, eventualmente, un modello previsionale più articolato, basato su un numero maggiore di variabili ed auspicabilmente più preciso.
Per ogni comune provvederò poi a calcolare un Municipality Prediction Gap (ABS[MPG]) e per comprendere meglio gli effetti di alcune variabili saranno messi a confronto categorie di comuni omogenee per numero di abitanti e percentuale di candidati presenti con pagina su Facebook. Infine provvederò a classificare i candidati per area politica di appartenenza e calcolerò un Party Prediction Gap (PPG) e un ABS[PPG] . Lo scarto fra la previsione ed il risultato può essere negativo o positivo. Per questo motivo in alcuni casi ho calcolato la media dei valori assoluti degli scarti [ABS] per dare conto dell’effettiva distanza fra i valori e in altri casi, laddove era importante mettere in evidenza la direzionalità dello scarto la semplice media degli scarti.
Infine calcolerò un indice di accuratezza della previsione attribuendo ad ogni comune un punteggio in base alla seguente tabella:

Score
Most popular candidate on Facebook arrived second 3
Second most popular candidate on Facebook won 3
Second most popular candidate on Facebook arrived second 4
Most popular candidate on Facebook won 6

 
Lo studio sui dati del 2011 ha fatto registrare un CPG che variava fra 0 e 84,18% per una media degli scarti in valore assoluto di 15,77% e non in valore assoluto di -6,21% (il valore negativo indica che la percentuale di popolarità su Facebook era tendenzialmente superiore a quella effettivamente ottenuta dai candidati alle elezioni – anche per via del minore numero di candidati per città). Nel 2011, dopo aver escluso i tre comuni che presentavano meno di due candidati con pagina Facebook, il campione era rappresentato da 26 competizioni elettorali corrispondenti ad altrettanti comuni. Fra i candidati di questi comuni poco più della metà avevano una pagina Facebook (51,1%). Nel 2012 questa percentuale, relativa ai 24 comuni con più di un candidato presente con una sua pagina Facebook, è del 54,8%.
Fra le conclusioni dello scorso anno si notava che:

  • l’ABS[MPG] diminuiva al crescere della percentuale di candidati del comune presenti con una pagina su Facebook;
  • l’ABS[MPG] nelle grandi città era inferiore rispetto a quello delle città medie e piccole;
  • Lo schieramento di centro-destra era quello più sottostimato rispetto agli altri dalla previsione basata sull’analisi del consenso su Facebook. Quello meno sottostimato era invece lo schieramento di sinistra;
  • In base all’indice di accuratezza della previsione ho potuto osservare come il candidato che risultava primo nella competizione su Facebook, in oltre l’80% dei casi risultava vincitore o piazzato al secondo posto della competizione elettorale.

Sulla base di queste conclusioni vorrei provare a fare delle vere previsioni sui dati di quest’anno (con la premessa che si tratta di un gioco e che il minore interesse degli elettori rispetto al 2011 porterà con tutta probabilità a previsioni meno attendibili):
Hanno l’80% di vincere o arrivare secondi nelle rispettive competizioni elettorali:

  • Salvatore Pennica (Agrigento), scarsamente affidabile;
  • Corrado Parise (Alessandria), poco affidabile;
  • Mariangela Cotto (Asti), poco affidabile;
  • Jacopo Massaro (Belluno), scarsamente affidabile;
  • Mauro D’Attis (Brindisi), poco affidabile;
  • Salvatore Abrano (Catanzaro), poco affidabile;
  • Mario Lucini (Como), poco affidabile;
  • Gigi Garelli (Cuneo), poco affidabile;
  • Marco Doria (Genova), affidabile;
  • Giuseppe Cingolani (Gorizia), scarsamente affidabile;
  • Raffaele Mauro (Isernia), scarsamente affidabile;
  • Ettore Di Cesare (L’Aquila), scarsamente affidabile;
  • Massimiliano Mammì (La Spezia), scarsamente affidabile;
  • Paolo Perrone (Lecce), affidabile;
  • Alessandro Tambellini (Lucca), poco affidabile;
  • Roberto Scanagatti (Monza), poco affidabile;
  • Leoluca Orlando (Palermo), molto affidabile;
  • Roberto Ghiretti (Parma), poco affidabile;
  • Anna Maria Celesti (Pistoia), poco affidabile;
  • Simone Petriangeli (Rieti), scarsamente affidabile;
  • Ezio (Ippazio) Stefano (Taranto), poco affidabile;
  • Gigi Riserbato (Trani), scarsamente affidabile;
  • Sabrina Rocca (Trapani), poco affidabile;
  • Gianni Benciolini (Verona), molto affidabile.

Il calcolo dell’affidabilità tiene conto della dimensione del comune e della percentuale di candidati presenti con una loro pagina su Facebook.
Nei prossimi giorni tornerò sull’argomento per vedere come è andata e quali indicazioni si possono trarre in vista della costruzione di un modello più efficace (magari tenendo anche conto della metrica talking_about_this_count).
I dati che ho raccolto sono disponibili a https://docs.google.com/spreadsheet/pub?key=0AlvOxUU1s8RVdGlFUlYwUy1nWW5QYV9mNFFobng4eUE&output=html.
L’articolo relativo allo studio sui dati del 2011 è stato accettato per la pubblicazione negli atti e la presentazione nella sezione poster di ICWSM-12.Dopo la prima esperienza fatta con le elezioni amministrative 2011, ho deciso di raccogliere i dati delle amministrative 2012. Grazie alla indispensabile collaborazione di Agnese Vardanega e del suo team, sono riuscito a identificare e monitorare 116 pagine Facebook relative ai 229 candidati sindaco dei 26 comuni capoluogo che andranno al voto il 6 e 7 Maggio. Si tratta del 51,6% contro il 44,5% dell’edizione 2011 dell’indagine.  Come lo scorso hanno ho deciso di concentrarmi solo sull’utilizzo delle pagine e non su quello dei profili personali (per una panoramica complessiva sull’utilizzo del web da parte dei candidati 2012 si veda questo report). La raccolta dati è iniziata il 17 Aprile e si è conclusa con la rilevazioni di oggi 5 Maggio. Per ogni pagina individuata ho raccolta sia il numero di Likes che quello dei talking_about_count (una metrica di engagement della pagina che non esisteva nel 2011).
Nel complesso ho rilevato un totale di 80147 Likes (contro i 179003 del 2011). Nel 2011 i rinnovi delle amministrazioni dei 29 capoluoghi coinvolgevano un totale di 4724554 elettori. Il rapporto con i Likes era dunque del 3,78%. Al momento non ho il dato degli elettori totali per i capoluoghi 2012, ma una prima stima basata sul numero di abitanti dei comuni chiamati al voto farebbe pensare ad una flessione della partecipazione.
Seguendo quanto fatto lo scorso anno, per ogni candidato calcolerò un Candidate Prediction Gap (CPG) inteso come la differenza fra la percentuale di voti validi e la percentuale di Likes ricevuti sul totale di quelli ricevuti da tutti i candidati del comune presenti con una pagina su Facebook.
Lo scopo è quello di creare un semplicissimo modello previsionale che possa essere studiato e testato nel tempo con l’obiettivo di creare, eventualmente, un modello previsionale più articolato, basato su un numero maggiore di variabili ed auspicabilmente più preciso.
Per ogni comune provvederò poi a calcolare un Municipality Prediction Gap (ABS[MPG]) e per comprendere meglio gli effetti di alcune variabili saranno messi a confronto categorie di comuni omogenee per numero di abitanti e percentuale di candidati presenti con pagina su Facebook. Infine provvederò a classificare i candidati per area politica di appartenenza e calcolerò un Party Prediction Gap (PPG) e un ABS[PPG] . Lo scarto fra la previsione ed il risultato può essere negativo o positivo. Per questo motivo in alcuni casi ho calcolato la media dei valori assoluti degli scarti [ABS] per dare conto dell’effettiva distanza fra i valori e in altri casi, laddove era importante mettere in evidenza la direzionalità dello scarto la semplice media degli scarti.
Infine calcolerò un indice di accuratezza della previsione attribuendo ad ogni comune un punteggio in base alla seguente tabella:

Score
Most popular candidate on Facebook arrived second 3
Second most popular candidate on Facebook won 3
Second most popular candidate on Facebook arrived second 4
Most popular candidate on Facebook won 6

 
Lo studio sui dati del 2011 ha fatto registrare un CPG che variava fra 0 e 84,18% per una media degli scarti in valore assoluto di 15,77% e non in valore assoluto di -6,21% (il valore negativo indica che la percentuale di popolarità su Facebook era tendenzialmente superiore a quella effettivamente ottenuta dai candidati alle elezioni – anche per via del minore numero di candidati per città). Nel 2011, dopo aver escluso i tre comuni che presentavano meno di due candidati con pagina Facebook, il campione era rappresentato da 26 competizioni elettorali corrispondenti ad altrettanti comuni. Fra i candidati di questi comuni poco più della metà avevano una pagina Facebook (51,1%). Nel 2012 questa percentuale, relativa ai 24 comuni con più di un candidato presente con una sua pagina Facebook, è del 54,8%.
Fra le conclusioni dello scorso anno si notava che:

  • l’ABS[MPG] diminuiva al crescere della percentuale di candidati del comune presenti con una pagina su Facebook;
  • l’ABS[MPG] nelle grandi città era inferiore rispetto a quello delle città medie e piccole;
  • Lo schieramento di centro-destra era quello più sottostimato rispetto agli altri dalla previsione basata sull’analisi del consenso su Facebook. Quello meno sottostimato era invece lo schieramento di sinistra;
  • In base all’indice di accuratezza della previsione ho potuto osservare come il candidato che risultava primo nella competizione su Facebook, in oltre l’80% dei casi risultava vincitore o piazzato al secondo posto della competizione elettorale.

Sulla base di queste conclusioni vorrei provare a fare delle vere previsioni sui dati di quest’anno (con la premessa che si tratta di un gioco e che il minore interesse degli elettori rispetto al 2011 porterà con tutta probabilità a previsioni meno attendibili):
Hanno l’80% di vincere o arrivare secondi nelle rispettive competizioni elettorali:

  • Salvatore Pennica (Agrigento), scarsamente affidabile;
  • Corrado Parise (Alessandria), poco affidabile;
  • Mariangela Cotto (Asti), poco affidabile;
  • Jacopo Massaro (Belluno), scarsamente affidabile;
  • Mauro D’Attis (Brindisi), poco affidabile;
  • Salvatore Abrano (Catanzaro), poco affidabile;
  • Mario Lucini (Como), poco affidabile;
  • Gigi Garelli (Cuneo), poco affidabile;
  • Marco Doria (Genova), affidabile;
  • Giuseppe Cingolani (Gorizia), scarsamente affidabile;
  • Raffaele Mauro (Isernia), scarsamente affidabile;
  • Ettore Di Cesare (L’Aquila), scarsamente affidabile;
  • Massimiliano Mammì (La Spezia), scarsamente affidabile;
  • Paolo Perrone (Lecce), affidabile;
  • Alessandro Tambellini (Lucca), poco affidabile;
  • Roberto Scanagatti (Monza), poco affidabile;
  • Leoluca Orlando (Palermo), molto affidabile;
  • Roberto Ghiretti (Parma), poco affidabile;
  • Anna Maria Celesti (Pistoia), poco affidabile;
  • Simone Petriangeli (Rieti), scarsamente affidabile;
  • Ezio (Ippazio) Stefano (Taranto), poco affidabile;
  • Gigi Riserbato (Trani), scarsamente affidabile;
  • Sabrina Rocca (Trapani), poco affidabile;
  • Gianni Benciolini (Verona), molto affidabile.

Il calcolo dell’affidabilità tiene conto della dimensione del comune e della percentuale di candidati presenti con una loro pagina su Facebook.
Nei prossimi giorni tornerò sull’argomento per vedere come è andata e quali indicazioni si possono trarre in vista della costruzione di un modello più efficace (magari tenendo anche conto della metrica talking_about_this_count).
I dati che ho raccolto sono disponibili a https://docs.google.com/spreadsheet/pub?key=0AlvOxUU1s8RVdGlFUlYwUy1nWW5QYV9mNFFobng4eUE&output=html.
L’articolo relativo allo studio sui dati del 2011 è stato accettato per la pubblicazione negli atti e la presentazione nella sezione poster di ICWSM-12.

Urbino su Facebook

o come Facebook rende visibili le relazioni in una comunità

Visto l’interesse destato dall’analisi del gruppo Facebook dell’Università di Urbino ho deciso di estendere questa visualizzazione per includere più gruppi. L’idea è quella di rappresentare le relazioni di amicizia dei più rappresentativi gruppi Facebook di Urbino.
In una prima fase ho dunque dovuto cercare e selezionare i gruppi da prendere in considerazione.
Sono dunque partito da una semplice ricerca con la chiave urbino nel motore interno di Facebook limitando i risultati ai soli gruppi. Degli oltre 364 gruppi restituiti, ho deciso di escludere tutti quelli che, dal titolo, sembravano chiaramente riferirsi a realtà più grandi (ad esempio tutti quelli Pesaro e Urbino). Ho inoltre deciso di prendere in considerazione solo i gruppi con oltre 50 membri. Di questi alcuni erano aperti ed altri chiusi. Per quelli aperti mi sono semplicemente unito al gruppo, per quelli chiusi ho richiesto l’autorizzazione a diventare membro (solo in un caso mi è stato chiesto il perché ed ho spiegato che stavo conducendo una ricerca). Ho avuto così accesso ai dati di 72 gruppi. Per ciascuno di essi ho scaricato il grafo delle relazioni intergruppo (usando netvizz) e aggregato i risultati in un unico file .gdf copiando in questo file la lista dei membri del gruppo e quella delle loro relazioni. Questa procedura ha causato ovviamente la duplicazione di molti nodi con il rispettivo numero identificativo. Questa duplicazione non ha tuttavia causato problemi all’atto dell’importazione in Gephi durante la quale i nodi duplicati sono stati automaticamente eliminati.
Il grafo risultato dall’aggregazione di tutte le relazioni fra i membri dei gruppi presi in considerazione consiste alla fine di 14014 nodi e 175188 archi.
Su questo grafo ho calcolato i soliti indici di centralità (eigenvector, betweenness, closeness ed eccentricity) e la modularity per individuare le comunità.
Ho inoltre posizionato i nodi utilizzando l’algortimo ForceAtlas 2 (con il paramento Gravity a 100 per evitare una eccessiva disgregazione).
L’analisi della modularità, definita come una misura di quanto bene una rete possa essere scomposta in comunità modulari, si attesta intorno allo 0,6 ed il numero di comunità identificato oscilla (si tratta di algoritmo randomizzato che genera risultati diversi ogni volta che viene eseguito) intorno alle 1000.

Da questo migliaio di comunità ne emergono tre che da sole raccolgono quasi il 50% dei nodi.
Si tratta di quelle che ho identificato come UNIURB (15,5% e colore Verde), URBINATI (15,02% Blu) e MOVIDA (13,15% Rosso). Significativa inoltre la dimensione del gruppo del COLLEGI (7,34% Giallo), GIURISPRUDENZA (5,41% Azzurro), ANNUNCI E RICHIESTE (5,35% Grigio), LICEO CLASSICO RAFFAELLO (5,26% Fucsia). Fra le altre comunità che ho identificato figurano inoltre quella dell’ISIA, dell’Istituto d’Arte, dell’Istituto per la Formazione al Giornalismo e quella degli studenti Greci.

Nelle immagini che seguono due visualizzazioni dei 250 utenti meglio connessi secondo, rispettivamente, la metrica della betweenness centrality e dell’eigenvector centrality.


Infine, visto che zoom.it si rifiuta di creare l’immagine zoommabile, potete scaricare le visualizzazioni totali in formto pdf con la dimensione dei nodi legate alla betweenness e all’eigenvector centrality (i nomi, in queste visualizzazioni complessive, sono stati volutamente rimossi per questioni di privacy).Visto l’interesse destato dall’analisi del gruppo Facebook dell’Università di Urbino ho deciso di estendere questa visualizzazione per includere più gruppi. L’idea è quella di rappresentare le relazioni di amicizia dei più rappresentativi gruppi Facebook di Urbino.
In una prima fase ho dunque dovuto cercare e selezionare i gruppi da prendere in considerazione.
Sono dunque partito da una semplice ricerca con la chiave urbino nel motore interno di Facebook limitando i risultati ai soli gruppi. Degli oltre 364 gruppi restituiti, ho deciso di escludere tutti quelli che, dal titolo, sembravano chiaramente riferirsi a realtà più grandi (ad esempio tutti quelli Pesaro e Urbino). Ho inoltre deciso di prendere in considerazione solo i gruppi con oltre 50 membri. Di questi alcuni erano aperti ed altri chiusi. Per quelli aperti mi sono semplicemente unito al gruppo, per quelli chiusi ho richiesto l’autorizzazione a diventare membro (solo in un caso mi è stato chiesto il perché ed ho spiegato che stavo conducendo una ricerca). Ho avuto così accesso ai dati di 72 gruppi. Per ciascuno di essi ho scaricato il grafo delle relazioni intergruppo (usando netvizz) e aggregato i risultati in un unico file .gdf copiando in questo file la lista dei membri del gruppo e quella delle loro relazioni. Questa procedura ha causato ovviamente la duplicazione di molti nodi con il rispettivo numero identificativo. Questa duplicazione non ha tuttavia causato problemi all’atto dell’importazione in Gephi durante la quale i nodi duplicati sono stati automaticamente eliminati.
Il grafo risultato dall’aggregazione di tutte le relazioni fra i membri dei gruppi presi in considerazione consiste alla fine di 14014 nodi e 175188 archi.
Su questo grafo ho calcolato i soliti indici di centralità (eigenvector, betweenness, closeness ed eccentricity) e la modularity per individuare le comunità.
Ho inoltre posizionato i nodi utilizzando l’algortimo ForceAtlas 2 (con il paramento Gravity a 100 per evitare una eccessiva disgregazione).
L’analisi della modularità, definita come una misura di quanto bene una rete possa essere scomposta in comunità modulari, si attesta intorno allo 0,6 ed il numero di comunità identificato oscilla (si tratta di algoritmo randomizzato che genera risultati diversi ogni volta che viene eseguito) intorno alle 1000.
Da questo migliaio di comunità ne emergono tre che da sole raccolgono quasi il 50% dei nodi.
Si tratta di quelle che ho identificato come UNIURB (15,5% e colore Verde), URBINATI (15,02% Blu) e MOVIDA (13,15% Rosso). Significativa inoltre la dimensione del gruppo del COLLEGI (7,34% Giallo), GIURISPRUDENZA (5,41% Azzurro), ANNUNCI E RICHIESTE (5,35% Grigio), LICEO CLASSICO RAFFAELLO (5,26% Fucsia). Fra le altre comunità che ho identificato figurano inoltre quella dell’ISIA, dell’Istituto d’Arte, dell’Istituto per la Formazione al Giornalismo e quella degli studenti Greci.
Nelle immagini che seguono due visualizzazioni dei 250 utenti meglio connessi secondo, rispettivamente, la metrica della betweenness centrality e dell’eigenvector centrality.


Infine, visto che zoom.it si rifiuta di creare l’immagine zoommabile, potete scaricare le visualizzazioni total in pdf con la dimensione dei nodi legate alla betweenness e all’eigenvector centrality (i nomi, in queste visualizzazioni complessive, sono stati volutamente rimossi per questioni di privacy).Visto l’interesse destato dall’analisi del gruppo Facebook dell’Università di Urbino ho deciso di estendere questa visualizzazione per includere più gruppi. L’idea è quella di rappresentare le relazioni di amicizia dei più rappresentativi gruppi Facebook di Urbino.
In una prima fase ho dunque dovuto cercare e selezionare i gruppi da prendere in considerazione.
Sono dunque partito da una semplice ricerca con la chiave urbino nel motore interno di Facebook limitando i risultati ai soli gruppi. Degli oltre 364 gruppi restituiti, ho deciso di escludere tutti quelli che, dal titolo, sembravano chiaramente riferirsi a realtà più grandi (ad esempio tutti quelli Pesaro e Urbino). Ho inoltre deciso di prendere in considerazione solo i gruppi con oltre 50 membri. Di questi alcuni erano aperti ed altri chiusi. Per quelli aperti mi sono semplicemente unito al gruppo, per quelli chiusi ho richiesto l’autorizzazione a diventare membro (solo in un caso mi è stato chiesto il perché ed ho spiegato che stavo conducendo una ricerca). Ho avuto così accesso ai dati di 72 gruppi. Per ciascuno di essi ho scaricato il grafo delle relazioni intergruppo (usando netvizz) e aggregato i risultati in un unico file .gdf copiando in questo file la lista dei membri del gruppo e quella delle loro relazioni. Questa procedura ha causato ovviamente la duplicazione di molti nodi con il rispettivo numero identificativo. Questa duplicazione non ha tuttavia causato problemi all’atto dell’importazione in Gephi durante la quale i nodi duplicati sono stati automaticamente eliminati.
Il grafo risultato dall’aggregazione di tutte le relazioni fra i membri dei gruppi presi in considerazione consiste alla fine di 14014 nodi e 175188 archi.
Su questo grafo ho calcolato i soliti indici di centralità (eigenvector, betweenness, closeness ed eccentricity) e la modularity per individuare le comunità.
Ho inoltre posizionato i nodi utilizzando l’algortimo ForceAtlas 2 (con il paramento Gravity a 100 per evitare una eccessiva disgregazione).
L’analisi della modularità, definita come una misura di quanto bene una rete possa essere scomposta in comunità modulari, si attesta intorno allo 0,6 ed il numero di comunità identificato oscilla (si tratta di algoritmo randomizzato che genera risultati diversi ogni volta che viene eseguito) intorno alle 1000.
Da questo migliaio di comunità ne emergono tre che da sole raccolgono quasi il 50% dei nodi.
Si tratta di quelle che ho identificato come UNIURB (15,5% e colore Verde), URBINATI (15,02% Blu) e MOVIDA (13,15% Rosso). Significativa inoltre la dimensione del gruppo del COLLEGI (7,34% Giallo), GIURISPRUDENZA (5,41% Azzurro), ANNUNCI E RICHIESTE (5,35% Grigio), LICEO CLASSICO RAFFAELLO (5,26% Fucsia). Fra le altre comunità che ho identificato figurano inoltre quella dell’ISIA, dell’Istituto d’Arte, dell’Istituto per la Formazione al Giornalismo e quella degli studenti Greci.
Nelle immagini che seguono due visualizzazioni dei 250 utenti meglio connessi secondo, rispettivamente, la metrica della betweenness centrality e dell’eigenvector centrality.


Infine, visto che zoom.it si rifiuta di creare l’immagine zoommabile, potete scaricare le visualizzazioni total in pdf con la dimensione dei nodi legate alla betweenness e all’eigenvector centrality (i nomi, in queste visualizzazioni complessive, sono stati volutamente rimossi per questioni di privacy).

Visualizzare le relazioni di amicizia dei membri di un gruppo Facebook

Analisi del gruppo Facebook dell’Università di Urbino

Ho scoperto solo oggi che netvizz consente di scaricare, oltre che il proprio grafo personale di Facebook, anche quello dei gruppi di cui si è membri.
Per testare questa funzionalità ho provato a scaricare il grafo relativo al gruppo Università di Urbino “Carlo Bo” composto, al momento in cui scrivo, da 2281 membri.
Nella documentazione è riportato che, a cause delle limitazioni imposte da Facebook sull’uso delle sue API, per gruppi superiori a 500 membri viene estratto un campione casuale di membri. Nella mia prova sono invece riuscito a scaricare, dopo alcuni minuti di attesa durante i quali sembra che non succeda nulla, un grafo praticamente completo composto da 2213 nodi e 13408 archi che rappresentano i legami di amicizia fra i membri del gruppo. Sul perché manchino all’appello 68 membri non saprei dirvi anche se sospetto possa dipendere dalle impostazioni di privacy degli utenti.
Netvizz crea un grafo indiretto in formato gdf. Da lì ad importare il grafo in Gephi il passo è stato breve.
Fra le misure di centralità ho deciso di utilizzare l’Eigenvector centrality per rappresentare le dimensioni dei nodi. Ho inoltre calcolato la modularity per individuare le comunità.
Ho infine applicato l’algoritmo ForceAtlas 2 per posizionare i nodi.
Ed ecco il risultato.

Scarica la visualizzazione in formato SVG
Credo si tratti di una fotografia piuttosto fedele delle relazioni a Urbino (almeno per quello che le conosco io). Si nota l’emergere di alcuni cluster interessanti come quello degli studenti greci in blu (sulla destra e piuttosto isolati), l’area di scienze della comunicazione (in rosso), quella dell’impegno politico in bianco e piuttosto centrali a segnalare una tendenza a fare amicizia con molte persone diverse, caratteristica questa che condividono con il cluster verde che fa invece riferimento alla vita notturna e all’intrattenimento. Lascio a voi il piacere di identificare gli altri cluster.
Vi lascio inoltre con una piccola curiosità.
Questo è il grafo dei 100 membri del gruppo meglio connessi (sempre in base all’Eigenvector centrality) rispetto agli altri.

Scarica la visualizzazione in formato SVG
Ci siete? E in che cluster?

L'agenda dei media e quella dei cittadini

Esiste una discrasia fra l’agenda scelta dai professionisti dell’informazione e gli interessi dei cittadini?

Talvolta si ha la sensazione che l’ordine di importanza delle notizie scelto dai professionisti dell’informazione non corrisponda a quello che, se potessero, sceglierebbero i cittadini. Si tratta poco più di una sensazione perché non vi è alcuno strumento preciso per conoscere in tempi utili le opinioni dei cittadini e confrontarle con le scelte fatte dai professionisti dell’informazione. Ma le cose cambiano in fretta…
Oggi i siti dei principali quotidiani e mezzi di informazione italiani consentono di apprezzare con un Like e/o condividere/consigliare ogni articolo pubblicato. Google News aggrega automaticamente (secondo un algoritmo ignoto) e rilascia in formato RSS i link alle notizie del giorno. Facebook consente di interrogare Open Graph per un dato indirizzo e conoscere quante volte quell’articolo è stato condiviso/consigliato/commentato e quanti Like ha ricevuto.
Ho deciso dunque di provare a mettere insieme i pezzi importando il feed RSS di Google News dentro un Google Spreadsheet (usando la funzione ImportFeed) e creando una classifica di questi articoli ordinandoli in base al numero di condivisione, like e commenti ricevuti.
Ecco il risultato (il foglio si aggiorna ogni ora circa):

Potete divertirvi a confrontarlo con le pagine dei principali quotidiani.
L’idea è quella di perfezionare questo sistema archiviando periodicamente i risultati del foglio di calcolo e le home page dei principali quotidiani italiani per consentire un raffronto delle due agende nel tempo.
Su un piano di riflessione più generale va detto che l’identificazione di eventuali discrasie fra l’agenda dei professionisti dell’informazione e agenda dei cittadini andrebbe interpretata. Il dato andrebbe letto in modo longitudinale cercando di capire se la discrasia sia determinata dal fatto che l’agenda dei cittadini segue quella dei professionisti dell’informazione. Se così fosse dovrebbe comunque emergere dai dati. In teoria o in casi specifici potrebbe avvenire anche il contrario. Ovvero una grossa attenzione dei cittadini verso un certo tema potrebbe spingere i professionisti a dedicare a questo tema maggiore spazio. Anche in questo caso i dati potrebbero dare indicazioni utili anche se l’elenco degli articoli è generato a partire dall’agenda dei professionisti e dunque il fenomeno di temi provenienti dall’agenda dei cittadini potrebbe essere talvolta invisibile.
Alcune limiti e cose da fare:
1. Il feed RSS di Google News è aggregato attraverso un algoritmo sconosciuto e composto da link a fonti eterogenee. Alcune molto popolari ed altre meno. La classifica è influenzata da queste scelte e sarebbe opportuno trovare un modo per utilizzare solo gli articoli delle principali testate (si potrebbe ad esempio usare, aggregandoli con una Yahoo! Pipe direttamente i feed di Repubblica, il Corriere, etc.);
2. Lo script di Google Spreadsheet che controlla i like, etc è basato sulle REST api che sono state deprecate in favore di Open Graph;
3. Bisognerebbe trovare un modo per archiviare il flusso di contenuti ed i dati evitando che si perda lo storico.
Cosa ne pensate? Suggerimenti, idee?

Le performance degli schieramenti politici su Facebook

Quanto e come la popolarità Facebook di un candidato appartenente ad un certo schieramento politico si riflette nelle percentuali di voto valido?

Dopo aver visto gli scostamenti per comune, prosegue l’analisi dei dati raccolti durante il primo turno delle elezioni amministrative del 15 e 16 Maggio. Questa volta abbiamo analizzato gli scostamenti per schieramento. Per farlo abbiamo operato una semplificazione dello scenario creando sette categorie (destra, centro-destra, centro, centro-sinistra, sinistra, movimento 5 stelle e altri) ed assegnano ciascun candidato sindaco ad uno di questi schieramenti.
Il risultato è riassunto in questo grafico:

In generale le percentuali di Facebook mostrano uno scostamento negativo rispetto a quelle ottenute dai candidati alle elezioni (percentuali più alte di Likes che di voti reali). Si tratta di un risultato fisiologico influenzato dall’assenza di molti candidati nella competizione su Facebook (candidati cioè che non hanno una loro pagina Facebook). Riducendosi il numero di competitors si alzano le percentuali medie.
Lo scarto medio fra Likes e voti è del -5% (in valore assoluto +/- 7%).
Emergono tuttavia altre due interessanti considerazioni:

  1. L’unico schieramento che ottiene un risultato in contro-tendenza è il centro-destra che fa registrare uno scostamento positivo del +8%. Lascio ai politologi l’interpretazione di questo dato che potrebbe essere influenzato dalle diverse strategie di campagna adottate dal centro-destra o dalle variabili strutturali che caratterizzano la popolazione di Facebook in Italia;
  2. Le forze estreme fanno registrare scostamenti maggiori rispetto alle forze più moderate. Gli otto candidati del centro (tutti riconducibili al terzo polo) fanno infatti registrare uno scostamento del -0,87%. Destra e Sinistra si attestano invece rispettivamente a -9% e -10%. Rilevante anche lo scostamento delle liste civiche (-15%) trainate con tutta probabilità dalla notorietà dei personaggi candidati.

I dati disaggregati per candidato sono consultabili in questo foglio del Google Spreadsheet di lavoro.
Contare i Mi Piace si è rivelato un esercizio interessante ed istruttivo. Gli indicatori costruiti si sono rivelati più accurati di quanto non si potesse pensare inizialmente. Ovviamente nessuno ipotizza un rapporto di causa-effetto fra popolarità su Facebook di un candidato e risultato elettorale. Si tratta di variabili indipendenti il cui andamento mostra tuttavia delle interessanti similitudini.
Siamo tuttavia consapevoli del fatto che parte dei Likes/Mi Piace di un candidato potrebbero essere rappresentati da detrattori e non da supporter di quel candidato. Per postare contenuti e commenti in una pagina è infatti necessario cliccare preventivamente sul bottone Mi Piace. Una interessante analisi su questo è stata pubblicata oggi su FriendFeed da Gianandrea di BuzzDetector. L’analisi mostra bene le evidenti differenze di comportamento degli utenti della pagina Facebook di Letizia Moratti e di Giuliano Pisapia.
Per questo motivo, durante la campagna elettorale, abbiamo inoltre raccolto tutti i contenuti (post e commenti) delle pagine Facebook dei candidati più popolari nella maggiori città. Abbiamo iniziato l’analisi di questi dati ma ci vorrà del tempo per vedere i risultati.
Per rimanere aggiornati su questo e altri progetti fai Like qui:

Nota metodologica: per calcolare gli scostamenti per schieramento abbiamo eliminato le città dove era presente su Facebook un solo candidato (Olbia e Ravenna).

Se i likes fossero voti

Come finirebbero le elezioni nelle quattro principali città italiane chiamate al voto se a contare fossero i Likes su Facebook?

Da quando sono state annunciate le candidature a sindaco per le amministrative del 15 e 16 Maggio stiamo raccogliendo con il LaRiCA i dati sul numero di Likes ricevuti dalle pagine Facebook dei candidati.
Lo scopo del progetto è descritto nel post Predire il risultato elettorale su Facebook?
Ho provato a vedere come andrebbero le cose se i Likes fossero voti (ovvero calcolando la percentuale di Likes ricevuti da ogni candidato sul totale dei Likes ricevuti da tutti i candidati di quel comune).
Ecco come andrebbe nelle quattro maggiori città:

[visualizza il grafico interattivo]

[visualizza il grafico interattivo]

[visualizza il grafico interattivo]

[visualizza il grafico interattivo]
N.B. Il Like, a differenza del voto, può essere espresso per più di un candiadato.

Laboratorio di Web Content

Le presentazioni dei progetti realizzati dagli studenti durante il Laboratorio di Web Content

Come anticipato, questa mattina gli studenti del laboratorio di Web Content, iniziato a novembre dello scorso,  hanno presentato in classe i loro progetti.
Scopo del corso è familiarizzare con gli strumenti di content management per la progettazione, creazione e promozione di contenuti web. Per quest’anno ho proposto agli studenti di realizzare e promuovere progetti web che, sfruttando il principio di non discontinuità fra attività online ed offline, ambissero ad avere un impatto diretto sul territorio locale. Il sistema di content management scelto da tutti i gruppi è stato quello a loro più familiare: Facebook.
Durante il corso ho inoltre sperimentato l’utilizzo dei nuovi gruppi Facebook. Ho creato il gruppo e chiesto agli studenti di aggiungere i loro colleghi (molti dei quali non sono miei Friends). In poco tempo quasi tutti gli studenti erano nel gruppo ed attraverso quello spazio abbiamo mantenuto tutti i contatti extra-lezione (durante l’occupazione ho anche segnalato di volta in volta l’aula e l’edificio che veniva assegnato per il giorno o la settimana successiva). Ogni gruppo ha pubblicato (usando la funzione documenti) il loro progetto che via via veniva completato con la descrizione, l’analisi della concorrenza e le strategie di promozione. Nel gruppo ho pubblicato tutti i documenti utilizzati a lezione dalle presentazioni (condividendo il link da SlideShare) ai link. Nel complesso l’uso del gruppo è stata una esperienza che mi sento di consigliare caldamente ai miei colleghi (sopratutto qualora anche loro abbiano già familiarità con la piattaforma di social network).
Tutti i gruppi hanno scelto autonomamente l’argomento del quale occuparsi che infatti spazia dalla gestione della pagina di un locale o esercizio commerciale fino a contest sull’arte o progetti che promuovono eventi.
Ai gruppi ho proposto anche una specie di competizione interna per vedere chi avrebbe ricevuto, alla fine del corso, il numero maggiore di like (alla fine, per la cronaca, ha vinto il gruppo Cellini Sport che ha raccolto, nel momento in cui scrivo, quasi 799 iscritti a partire dal primo dicembre 2010).
Le presentazioni finali sono state realizzate secondo il format Ignite (20 slide che avanzano automaticamente ogni 15 secondi).
Il risultato potete vederlo qui di seguito:

Fior di Loto
5:34
Daunbailò
5:29
Urbino in Cinema
5:09
Music Events Marche
5:16
Cellini Sport & Fashion
5:13
Palestra Mad
5:13
Tatoo Zone
5:00
Il Portico
5:26
Urbino we Like
5:05

Urbino vetrine in Arte (che ha realizzato la presentazione con Prezi)

La descrizione di tutti i progetti la trovate sulla pagina dedicata sul sito web del laboratorio.